Real-Time EEG-Based Brain—Machine Interface
for Robotic Arm Control Using Motor Imagery

*Ozgur Ege Aydogan', Ding Changhao', Takufumi Yanagisawa'-2

'Department of Neuroinformatics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
2Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan

“Presenting author y N~

Presented at the 1st DecNef Symposium (International Symposium on Decoded Neurofeedback), July 17, 2025 OSAKA UNIVERSITY
1. Introduction 3. Results 4. Discussion & Future Work
Brain-machine interfaces (BMlIs) provide a direct Experimental Scenarios Key Contributions

communication pathway between neural activity and | o
external devices [1], [2]. They enable intuitive control ° Scenario 1 — Interface Validation: Manual keyboard  *

of robotic systems and offer transformative potential inputs were used to trigger robotic actions.

for assistive neurotechnologies [3], [4].  Scenario 2 — Offline Decoder Evaluation: Simulated

EEG trials were used to train and cross-validate a .

This study presents a real-time, non-invasive BMI o _ L
SVM classifier via 5-fold validation.

framework that decodes motor imagery (MIl) EEG

signals to control a robotic arm during object  Scenario 3 — Real-Time Motor Imagery Control: Live
manipulation tasks. EEG signals recorded during MI tasks were .
streamed and decoded in real time.

Users

Objective: To design and validate a low-latency,
close-loop BMI system for robotic arm control. The
system leverages MI-based EEG decoding and
demonstrates real-time command execution.

2. System Architecture & Methods

EEG Acquisition & Preprocessing

- A 32-channel EEG cap recorded signals at 512 Hz Online Decoding Results
during motor imagery (grasp left/right).
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~ of Robot Actions o

Triggered

 The BMI system was evaluated using 80 EEG trials.

* Hybrid datasets (real trials + synthetic data)

. o * Two motor imagery classes were defined: Label O
validated the pipeline.

— Grasp green cube, Label 1 — Grasp yellow cube
» Signals were bandpass-filtered (8—30 Hz), notch-

_ | Predicted label distribution was found to be o
filtered (50 Hz), and normalized (z-score). balanced (Label 0: 36 trials, Label 1: 44 trials)
Feature Extraction & Classification - The average command latency was measured
approximately 1.2 seconds. .

* Welsh-based bandpower features (Alpha: 8—12 Hz;
Beta: 12—30 Hz) were extracted across 30 channels. ©* Command execution was observed to be consistent

and accurate, with no trial failures.
* Dimensionality reduction (Principal Component

Analysis (PCA), top 10 components) preceded
classification.
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* Alinear support vector machine (SVM) trained on
binary M| data (left vs. right hand) with low latency.
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A modular, web-based BMI framework was
developed to support flexible decoding and
control.

Real-time decoding latency of 1.2 £ 0.3
seconds was achieved, approaching the sub-
1.5s threshold typical of invasive BMI| systems.

A fully closed-loop control system was
iImplemented, enabling reliable real-time object
manipulation via decoded motor imagery.

Limitations

The current system supports only M| decoding;
future integration of SSVEP and P300
paradigms is expected to enhance system’s
flexibility and multi-stage control capabilities.

Future Work

Multimodal BMI: Integration of SSVEP (8-15
Hz) for robot selection and P300 for object
selection will be implemented.

Expanded MI decoding: A 4-class Ml classifier
will be developed to enable fine-grained
grasp/place tasks.

Hardware deployment: Latency optimization
will be prioritized for physical robotic systems.

Fig. 9: Multi-Robot Control

5. Conclusion

Actuation & Control | e + Areal-time EEG-based BMI system was

Fig. 6: BMI Inter-Command Delay Histogram

« Decoded commands were transmitted via Lab

Streaming Layer (LSL) and WebSocket to a Decoder Robustness & System Stability

RoboHive-based robotic simulator. » Balanced transitions between motor imagery .

classes were maintained across trials, indicating

* End-to-end latency averaged 1.2s (EEG acquisition _ _
stable decoding behavior.

— robot action).

—— * No signs of overfitting or classifier drift were .
EEG »| Preprocessing »|  Extraction »|  Decoder .
l observed throughout the session.
* Prediction latency and confidence remained
Robot Action [ WebSocket i Command .
consistent.
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Fig. 3: Simulation Environment Fig. 8: Timeline of Real-Time BCI Robot Actions

developed and validated using simulation,
synthetic, and real EEG trials.

Pre-clinical viability was demonstrated through
a modular web-compatible architecture,
achieving clinically acceptable latency (1.2s).

Multi-paradigm flexibility was enabled through a
translational design supporting MI, SSVEP, and
P300 integration without requiring architectural
overhaul.
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