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1. Introduction

Brain-machine interfaces (BMIs) provide a direct 

communication pathway between neural activity and 

external devices [1], [2]. They enable intuitive control 

of robotic systems and offer transformative potential 

for assistive neurotechnologies [3], [4].

This study presents a real-time, non-invasive BMI 

framework that decodes motor imagery (MI) EEG 

signals to control a robotic arm during object 

manipulation tasks. 

Objective: To design and validate a low-latency, 

close-loop BMI system for robotic arm control. The 

system leverages MI-based EEG decoding and 

demonstrates real-time command execution.

2. System Architecture & Methods

EEG Acquisition & Preprocessing

• A 32-channel EEG cap recorded signals at 512 Hz 

during motor imagery (grasp left/right).

• Hybrid datasets (real trials + synthetic data) 

validated the pipeline.

• Signals were bandpass-filtered (8–30 Hz), notch-

filtered (50 Hz), and normalized (z-score).

Feature Extraction & Classification

• Welsh-based bandpower features (Alpha: 8–12 Hz; 

Beta: 12–30 Hz) were extracted across 30 channels.

• Dimensionality reduction (Principal Component 

Analysis (PCA), top 10 components) preceded 

classification.

• A linear support vector machine (SVM) trained on 

binary MI data (left vs. right hand) with low latency.

Actuation & Control

• Decoded commands were transmitted via Lab 

Streaming Layer (LSL) and WebSocket to a 

RoboHive-based robotic simulator.

• End-to-end latency averaged 1.2s (EEG acquisition 

→ robot action).

3. Results

Experimental Scenarios

• Scenario 1 – Interface Validation: Manual keyboard 

inputs were used to trigger robotic actions.

• Scenario 2 – Offline Decoder Evaluation: Simulated 

EEG trials were used to train and cross-validate a 

SVM classifier via 5-fold validation.

• Scenario 3 – Real-Time Motor Imagery Control: Live 

EEG signals recorded during MI tasks were 

streamed and decoded in real time.

Online Decoding Results

• The BMI system was evaluated using 80 EEG trials. 

• Two motor imagery classes were defined: Label 0 

→ Grasp green cube, Label 1 → Grasp yellow cube

• Predicted label distribution was found to be 

balanced (Label 0: 36 trials, Label 1: 44 trials)

• The average command latency was measured 

approximately 1.2 seconds.  

• Command execution was observed to be consistent 

and accurate, with no trial failures. 

Decoder Robustness & System Stability

• Balanced transitions between motor imagery 

classes were maintained across trials, indicating 

stable decoding behavior.

• No signs of overfitting or classifier drift were 

observed throughout the session.

• Prediction latency and confidence remained 

consistent.

4. Discussion & Future Work

Key Contributions

• A modular, web-based BMI framework was 

developed to support flexible decoding and 

control.

• Real-time decoding latency of 1.2 ± 0.3 

seconds was achieved, approaching the sub-

1.5s threshold typical of invasive BMI systems.

• A fully closed-loop control system was 

implemented, enabling reliable real-time object 

manipulation via decoded motor imagery.

Limitations

• The current system supports only MI decoding; 

future integration of SSVEP and P300 

paradigms is expected to enhance system’s 

flexibility and multi-stage control capabilities.

Future Work

• Multimodal BMI: Integration of SSVEP (8-15 

Hz) for robot selection and P300 for object 

selection will be implemented. 

• Expanded MI decoding: A 4-class MI classifier 

will be developed to enable fine-grained 

grasp/place tasks.

• Hardware deployment: Latency optimization 

will be prioritized for physical robotic systems.

5. Conclusion

• A real-time EEG-based BMI system was 

developed and validated using simulation, 

synthetic, and real EEG trials.

• Pre-clinical viability was demonstrated through 

a modular web-compatible architecture, 

achieving clinically acceptable latency (1.2s).

• Multi-paradigm flexibility was enabled through a 

translational design supporting MI, SSVEP, and 

P300 integration without requiring architectural 

overhaul.
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